" iStrlbuted Transactlon Processmg

"‘ Ah-rr.-..l

I, Youyou Lu', Yiming Zhang?, Qing Wang', Zhuo Cheng) ~—

=

Keji Huang , Jiwu Shu!

http://storage.cs.tsinghua.edu.cn/

Coordination in Distributed Transactions

<+ Network communication is a major source of coordination cost
< Concurrency control protocols

< Replication protocols

< Leveraging the high-speed network
< Reduce latency

< Shorten contention span to reduce abort rate

© FaRM (®© FaSST © DrTM-H (© FaRM with opacity
(SOSP’15) (OSDI'16) (OSDI’18) (SIGMOD'19)

° However, with the high-speed network,

the coordination cost is still significant

DrTM NAM-DB Active-Memory Chiller
(SOSP’15) (VLDB'17) (VLDB'’19) (SIGMOD™20)

Coordination Cost |

<+ With high-speed network, the coordination cost is still significant

(- Waste CPU to process coordination packets A

< Waste CPU cycles

\0:0 CPU processing latency is more important with a faster network ,
@ Issue txns @ Coordination (O Other @ Remote ops @ Coordination @ Issue txns @ Coordination
@ Remote ops @ Polling @ Issue tns @ Network + other

80

60

40

0

of packets / transaction

20| -

2 4 8
of shards /transaction

100

CPU utilization(%)
S & 3 3

o

2 4 8
of shards / transaction

100%

80%

60%

40%

20%

0%

Latency breakdown

10Gbps 100Gbps
NIC configuration

Coordination Cost ||

<+ With high-speed network, the coordination cost is still significant

4 Semantic gap between Txn apps and network
< Inappropriate processing order introduces extra aborts

< Redundant flow control algorithms interfere with each other
< Admission control: controls the number of concurrent transactions
_ * Congestion control: controls the number of concurrent network messages /

\

Client,

O unlock(A)

—?

Client,

Situation @>® : Client, locks A successfully
Situation ®>0 : Client, needs to retry to lock A

® lock(A)

/ . |

Server

() locked by
= client,

Transaction
processing

Network stack

Network hardware

Admission
control

Congestion
control

)®

Opportunities from Programmable Switches

BAREFCO:T

NETWORKS | an Intel company

 Ingress Queues | Egress

(e ()| ©8) 00 N

. dstIP == a.b.c.d | i | l i

| Parser _ D | |

| (dstrp, [AT][Action] -+« |Deparser| T @@ — DD %

| [dstPort, || _flow[dstPort]++ | ; i i i

- Registers Regs @@
@ external network ports ~ —— normal packet flow = recirculation

-

Programmable Switches

< Centralized hub
< User-defined parsers / Match-Action tables / queues —>
< On-chip memory
\¢* Line-rate processing

\
\Transactlon defined

/ protocol

/=—> Low-overhead

Desigh Goals and Challenges

Design Goals: reduce coordination cost
Offload coordination tasks
Manipulate transaction traffic intelligently

Challenges:

Restricted expressive power and limited on-chip memory
Stage 1 Stage 2 Stage n

N\
[Do)
o . S IN \Arrays|| | [Arrays|| [|Arrays|
Coordination logic A >

g Q&\\}\;ﬁy Tables Tables Tables

Outline

< Switch Tx: In-Network Transaction Coordination

Overview

In-Network Transaction Coordination

Server 1

Worker Threads Ol eee T O

. corkerThreads [kot il e, ol
s client: J client |
;:E: Exec Txns :> g:E: L)
& = 000: : |

,,,,,, 7 participant: ™™ |participant / @'j"m primary backup buffer

Server 0

Exec Remote Ops)

Programmablet| — 18k eee — & — 8k

-
: Switch
witches
G 8
= primary backup buffer

Key Design

To save CPU utilization
|.1 Coordination tasks — in-switch Gather-and-Scatter (Ga$)
|.2 Scalable tree-based GaS using all switches

To break the semantic gap between Txn apps and network
2.1 Semantic-aware packet priority control

2.2 Dynamic admission control

|.1) In-switch Gather-and-Scatter

% Offload coordination tasks as in-switch Ga$S
< An example: Txn { read[D,,D,], write[D,D,] }

Commit Commit
backup

Exec Lock Validate primary

|.1) In-switch Gather-and-Scatter

< GaS (gather_group, scatter_group)
<+ Gather messages from the participants of the current phase
< Scatter the result to the participants of the next phase

Commit Commit
backup

Exec Lock Validate primary

|.1) In-switch Gather-and-Scatter

Save CPU resources

el replicate_ok

4

Shorten contention spans

|.2) Scalable Tree-based Gather-and-Scatter

% Gather-and-Scatter tree
< Servers: leaf nodes 1 Gather

< Switches: non-leaf nodes J Scatter

Switches
O« OB ¢
X1 1 1
Servers

0 1

2 Break the semantic gap

4)

Client ‘ Switch r Server

Admission Performance | PR PESGERE SRt
Control J Monitoring @@@@

__

__

To reduce both @@@@

transaction aborts and . e)

network congestion
Control

To shorten
contention spans and
reduce unnecessary abort

2.1) Semantic-aware Packet Priority Control

< Assign priorities to messages based on their types
v < Highest: lock releasing + messages of retrying transactions
¥ < Lowest: lock acquiring

V' < Medium: other messages

< Implementation

< Priority queues in switches

quues Batching +
(SWiI ch Reordering

< Batch-based reordering in servers

Client Server

2.2) Dynamic Admission Control

< Increasing maximum number of parallel requests

<+ Higher resource utilization €%
<+ Higher abort rate &
% Network congestion &)

< Signals
< Global performance metrics
< Individual network conditions

< Algorithm: AIMD
< Additive increase
< Multiplicative decrease

@ Throughput@ Abortrate -0 Txn latency (P50)

Admission P
B Control B

0 4
»?
o 23
=
Performance % 2
£
> 1
o
<0
Client

Switch

Performance
Monitoring

R \

240

More Details: checkout our paper

< Other design details

o

/
0’0 L)

<

.0

L)

4

0‘0

How to map GaS operations to Match-Action tables
How to select switches to form the GasS tree
How to handle packet loss and packet out-of-order

How to handle server or switch failure

< The practicality of SwitchTx

< Implementation details

o

L)

4

L (4

L)

\/
0.0

Packet formats
RMDA RAW_PACKET verbs for control messages

A 4

RDMA WRITE_WITH_IMM verbs for data messages

Outline

<+ Results

Experimental Setup

Hardware Platform

Server 8x Servers
CPU 2x Intel 12-core Xeon E5-2650 CPUs switch, switch, switch; switchg
NIC |00Gbps Mellanox ConnectX-5

Switch Barefoot Tofino Wedge 100BF-32X (bf-sde-8.8.1)

4 independent virtual switches
Competitors
SwitchTx OCC + Primary-backup replication, scalable in-network coordination
FaSST [OSDI’1 6] | OCC + Primary-backup replication
Eris [SOSP’17] Independent deterministic transaction, centralized in-network sequencer

Others: Aria [VLDB20], Calvin [SIGMOD’12] (check our paper)

Benchmarks: TPC-C, YCSB-T

Overall Performance

8 nodes, 24 threads per node

YCSB-T: a transaction reads/writes (50%:50%) 8 records, each record has an 8-byte key and a | 6-byte value
TPC-C: 50% New-Order + 50% Payment

Throughput O Txn latency (P50) 4F Txn latency (P90)
—~ 200 ~ 3 360
» L
» %
Z 180 o : X[o
= e = 2
= 81 x| 2 = 2| 240 >
- >) (@)
Q. (®) o cC
= 100 § g 2
S © S —
o — © 1
= 50 = 120
30%
0 0
@/,/. A\GS *Q %7} o %
S 708798 Toe My, i
S So,- Sor

YCSB-T (Zipf 6=0.99

Switch Tx can boost the performance of distributed transactions

Scalability

8 nodes

| ~24 threads per node

s/s)

== Eris

4 —A— FaSST =0O— SwitchTx

.....

40

—b— FaSST =O— SwitchTx

o~ 3
g
2 2
5
.................... o
L
)
o 1
-
|_
40 80 120 160 200 0 40
of threads

In-switch Gather-and-Scatter is scalable

80 120 160 20C
of threads

Saved CPU Resources and Packets

YCSB-T Benchmark

() Other @ Remote ops @ Coordination @ Issue txns @ Coordination

@ Polling @ Issue txns 5 @ Remote ops
100 =
o T 80
(@]
S 80 2
cC
o S 60
S 60 s
N ”
= 40 > 40
> S
E 20 g 20
® 5 4
2 4 8 +H+ 2 4 8
of shards / transaction # of shards / transaction

SwitchTx effectively saves CPU resources and reduces network traffic

Limitation

YCSB-T: varying the number of shards accessed by each transaction

TPC-C: varying the % of remote items for New-Order transaction

. —A— FaSST -O— SwitchTx 6 & FaSST O SwitchTx
©)
n 5 n BAk-\ - - e e e D e e s s e
Z g1
é 4 é ¥ T
5 3 S 3 - A Coe .
o o
N N
[®)) 2 [@)) 2 I
) -]
@) ®)
E 1 _E 1 - - - o
~ —
0 0
2 3 4 5 6 7 8 0 20 40 60 80 10C
of shards per transaction % of items from remote warehouses

SwitchTx is suitable for the transactions cross many shards

Outline

% Summary

Summary

< Goal
< Reduce coordination cost in distributed transaction processing systems
<+ Key ldea

< Using programmable switches to offload coordination tasks and manipulate transaction
traffic intelligently

< Techniques in SwitchTx
% Scalable in-network Gather-and-Scatter

« Priority control and dynamic admission control

< Results
< SwitchTx outperforms state-of-the-arts

< SwitchTx is scalable to multiple switches

Thanks

—:. R

L ~——~..__*.:.~m

, tp://sto‘rage.cs.tsinghua.edu.cn/~|jr/), lijr | 9@mails.tsin

http://storage.cs.tsinghua.edu.cn/~ljr/
mailto:lijr19@mails.tsinghua.edu.cn

