" iStrlbuted Transactlon Processmg

"‘ Ah-rr.-..l

I, Youyou Lu', Yiming Zhang?, Qing Wang', Zhuo Cheng ) ~—

=

Keji Huang , Jiwu Shu!



http://storage.cs.tsinghua.edu.cn/

Coordination in Distributed Transactions

<+ Network communication is a major source of coordination cost
< Concurrency control protocols

< Replication protocols

< Leveraging the high-speed network
< Reduce latency

< Shorten contention span to reduce abort rate
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° However, with the high-speed network,

the coordination cost is still significant
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Coordination Cost |

<+ With high-speed network, the coordination cost is still significant

(- Waste CPU to process coordination packets A

< Waste CPU cycles

\0:0 CPU processing latency is more important with a faster network ,
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Coordination Cost ||

<+ With high-speed network, the coordination cost is still significant

4 Semantic gap between Txn apps and network
< Inappropriate processing order introduces extra aborts

< Redundant flow control algorithms interfere with each other
< Admission control: controls the number of concurrent transactions
\_ * Congestion control: controls the number of concurrent network messages /
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Opportunities from Programmable Switches
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Programmable Switches

< Centralized hub
< User-defined parsers / Match-Action tables / queues —>
< On-chip memory
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Desigh Goals and Challenges

Design Goals: reduce coordination cost
Offload coordination tasks
Manipulate transaction traffic intelligently

Challenges:

Restricted expressive power and limited on-chip memory
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Outline

< Switch Tx: In-Network Transaction Coordination



Overview

In-Network Transaction Coordination

Server 1

Worker Threads Ol eee T O

. corkerThreads [ kot il e, ol
s client: J client |
;:E: Exec Txns :> g:E: L )
& = 000: : |

,,,,,, 7 participant: ™™ |participant / @'j"m primary backup buffer

Server 0

Exec Remote Ops )

Programmablet| — 18k eee — & — 8k

-
: Switch
witches
G 8
= primary backup buffer




Key Design

To save CPU utilization
|.1 Coordination tasks — in-switch Gather-and-Scatter (Ga$)
|.2 Scalable tree-based GaS using all switches

To break the semantic gap between Txn apps and network
2.1 Semantic-aware packet priority control

2.2 Dynamic admission control



|.1) In-switch Gather-and-Scatter

% Offload coordination tasks as in-switch Ga$S
< An example: Txn { read[D,,D,], write[D,D,] }

Commit Commit
backup

Exec Lock Validate primary




|.1) In-switch Gather-and-Scatter

< GaS (gather_group, scatter_group)
<+ Gather messages from the participants of the current phase
< Scatter the result to the participants of the next phase

Commit Commit
backup

Exec Lock Validate primary




|.1) In-switch Gather-and-Scatter

Save CPU resources

el replicate_ok
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Shorten contention spans



|.2) Scalable Tree-based Gather-and-Scatter

% Gather-and-Scatter tree
< Servers: leaf nodes 1 Gather

< Switches: non-leaf nodes J Scatter
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2 Break the semantic gap
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2.1) Semantic-aware Packet Priority Control

< Assign priorities to messages based on their types
v < Highest: lock releasing + messages of retrying transactions
¥ < Lowest: lock acquiring

V' < Medium: other messages

< Implementation

< Priority queues in switches

quues Batching +
( SWiI ch Reordering

< Batch-based reordering in servers

Client Server




2.2) Dynamic Admission Control

< Increasing maximum number of parallel requests

<+ Higher resource utilization €%
<+ Higher abort rate &
% Network congestion &)

< Signals
< Global performance metrics
< Individual network conditions

< Algorithm: AIMD
< Additive increase
< Multiplicative decrease
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More Details: checkout our paper

< Other design details
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How to map GaS operations to Match-Action tables
How to select switches to form the GasS tree
How to handle packet loss and packet out-of-order

How to handle server or switch failure

< The practicality of SwitchTx

< Implementation details
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Packet formats
RMDA RAW_PACKET verbs for control messages

A 4

RDMA WRITE_WITH_IMM verbs for data messages
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<+ Results



Experimental Setup

Hardware Platform

Server 8x Servers
CPU 2x Intel 12-core Xeon E5-2650 CPUs switch, switch, switch; switchg
NIC |00Gbps Mellanox ConnectX-5

Switch Barefoot Tofino Wedge 100BF-32X (bf-sde-8.8.1)

4 independent virtual switches
Competitors
SwitchTx OCC + Primary-backup replication, scalable in-network coordination
FaSST [OSDI’1 6] | OCC + Primary-backup replication
Eris [SOSP’17] Independent deterministic transaction, centralized in-network sequencer

Others: Aria [VLDB20], Calvin [SIGMOD’12] (check our paper)

Benchmarks: TPC-C, YCSB-T



Overall Performance

8 nodes, 24 threads per node

YCSB-T: a transaction reads/writes (50%:50%) 8 records, each record has an 8-byte key and a | 6-byte value
TPC-C: 50% New-Order + 50% Payment
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Switch Tx can boost the performance of distributed transactions




Scalability

8 nodes

| ~24 threads per node
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Saved CPU Resources and Packets

YCSB-T Benchmark
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SwitchTx effectively saves CPU resources and reduces network traffic



Limitation

YCSB-T: varying the number of shards accessed by each transaction

TPC-C: varying the % of remote items for New-Order transaction
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SwitchTx is suitable for the transactions cross many shards
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% Summary



Summary

< Goal
< Reduce coordination cost in distributed transaction processing systems
<+ Key ldea

< Using programmable switches to offload coordination tasks and manipulate transaction
traffic intelligently

< Techniques in SwitchTx
% Scalable in-network Gather-and-Scatter

« Priority control and dynamic admission control

< Results
< SwitchTx outperforms state-of-the-arts

< SwitchTx is scalable to multiple switches
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